This function implements a VEM algorithm.
vem_grad(obs1, obs2, type, data, var1, var2,
lambda1, lambda2, p, startk,
numiter=5000, acc=1.e-7)
the first column of the observations
the second column of the observations
kind of data
an optional data frame
Means of the first column of the observations
Means of the second column of the observations
Mixing weight
Variance of the first column of the observations(only for meta-analysis)
Variance of the second column of the observations (only for meta-analysis)
starting/maximal number of components. This number will be used to compute the grid in the VEM. Default is 20.)
parameter to control the maximal number of iterations in the VEM and EM loops. Default is 5000.
convergence criterion. Default is 1.e-7
if (FALSE) {
#1. VEM-algorithm for bivariate normally distributed data
#Examples
data(rs12363681)
vem_grad(obs1=x,obs2=y,type="bi", data=rs12363681,startk=20)
#2.VEM for metadata
data(CT)
vem_grad(obs1=logitTPR, obs2= logitTNR,
var1= varlogitTPR, var2= varlogitTNR,
type="meta", data=CT, startk=20)
}
Run the code above in your browser using DataLab